One-Hot Vector Hybrid Associative Classifier for Medical Data Classification
نویسندگان
چکیده
منابع مشابه
One-Hot Vector Hybrid Associative Classifier for Medical Data Classification
Pattern recognition and classification are two of the key topics in computer science. In this paper a novel method for the task of pattern classification is presented. The proposed method combines a hybrid associative classifier (Clasificador Híbrido Asociativo con Traslación, CHAT, in Spanish), a coding technique for output patterns called one-hot vector and majority voting during the classifi...
متن کاملPractical Application of Associative Classifier for Document Classification
In practical text classification tasks, the ability to interpret the classification result is as important as the ability to classify exactly. The associative classifier has favorable characteristics, rapid training, good classification accuracy, and excellent interpretation. However, the associative classifier has some obstacles to overcome when it is applied in the area of text classification...
متن کاملA hybrid intelligent system for medical data classification
In this paper, a hybrid intelligent system that consists of the Fuzzy Min–Max neural network, the Classification and Regression Tree, and the Random Forest model is proposed, and its efficacy as a decision support tool for medical data classification is examined. The hybrid intelligent system aims to exploit the advantages of the constituent models and, at the same time, alleviate their limitat...
متن کاملSpoken language classification using hybrid classifier combination
In this paper we describe an approach for spoken language analysis for helpdesk call routing using a combination of simple recurrent networks and support vector machines. In particular we examine this approach for its potential in a difficult spoken language classification task based on recorded operator assistance telephone utterances. We explore simple recurrent networks and support vector ma...
متن کاملClassifier Ensemble for Uncertain Data Stream Classification
Currently available algorithms for data stream classification are all designed to handle precise data, while data with uncertainty or imperfection is quite natural and widely seen in real-life applications. Uncertainty can arise in attribute values as well as in class values. In this paper, we focus on the classification of streaming data that has different degrees of uncertainty within class v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2014
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0095715